Tag Archives: Hyper-V

Why running a hotel like you run your storage array could put you out of business.

<this post was updated on April 2, 2010>

Recently I wrote about why “Cost per raw TB” wasn’t a very good metric for comparing storage arrays.  In fact, my good friend Roger Kelley over at StorageWonk.com wrote a nice blog specifically “Comparing Storage Arrays “apples to apples” .  We don’t say this as a means to simply ignore some of the features and functions that some of the other vendors offer.  It’s just our helpful reminder that there is no “free storage lunch”.

So let me take you on a different type of journey around “cost per raw TB” and “cost per useable TB” and apply it to something outside of technology.  Hopefully this will make sense!!

Let’s assume you are in the market for a 100 room hotel.  You entertain all sorts of realtors that tell you why their hotel is better than the others. You’ve decided that you want to spend about $100,000 for 100 room hotel which averages about $1000 per room.   So, at a high level all the hotels offer that same cost per room.  Let’s call this “Cost per raw occupancy”.  It’s the easy way to figure out costs and it looks fair. 

You narrow down your list of hotels to three choices.  We’ll call them hotel C, hotel N and hotel X.   Hotel C and N have the same architecture, same basic building design, essentially they look the same other than names and colors of the buildings.  Hotel X is unique in the fact that it’s brand new and created by a group that has been building hotel rooms for 30+ years with each hotel getting better and better.  They are so confident in their building that it comes with 5 years of free building maintenance.   

So, you ask the vendors to give you their “best practice, not to exceed hotel occupancy rate”.  Hotel C tells you they have some overhead associated with some of their special features so their number is about 60 rooms that could be rented out at any given time.  The reservation system will let you book an unlimited amount of rooms, but once you get over 60 things just stop working well and guests complain.  Hotel N says they can do about 70 rooms before they have issues.  Hotel X says they have tested at 96 room’s occupancy without any issues at all.  

So, while at a high level hotel’s C, N and X were $1000 a room, after further review hotel C is about $1600 a room, hotel N is $1400 a room and hotel X is $1041 a room.  Big difference!!  Let’s assume each of these vendors could “right size” their hotel to meet your 100 room request but the room cost will stay the same.  So, hotel C would now cost you $160,000, hotel N is $140,000 and hotel X is $104,000.  So that my friend is what I like to call “Cost per useable occupancy” !!

Another way to do this is to have hotel C and N right size down to your budget number based on “cost per useable occupancy”.  If the $100,000 is the most important and you understand that you will only get to rent out 60 or 70 rooms from the other hotels, then you could save money with Hotel X by just purchasing 60 rooms in hotel X.  That would bring Hotel X’s costs down to $60,000 or a nice savings of $40,000!!  The net-net is you get 60 rooms across all 3 hotels but 1 offers you a HUGE savings. 

At the end of the day, as the owner of that hotel you want as many rooms rented out as possible.  The last thing you want to see happen is your 100 room hotel only capable of 60% or 70% occupancy. 

So, if you are in the market for a 100 room hotel, or a Storage Array, you might want to spend a little more time trying to figure out what their best practice occupancy rate is !!  It’ll save you money and heartburn in the end.  

I’ll leave you with this – based on the array you have today, what do you think your occupancy rating would be for your 100 room hotel?  Feel free to leave the vendor name out (or not) 🙂

@StorageTexan

How to build resilient, scalable storage clouds and turn your IT department into a profit center

How to build resilient, scalable storage clouds and turn your IT department into a profit center!!

If you’ve been living under a rock for the last year the topic of Cloud based computing might be new to you.  Don’t worry about it at this point, there are CLEARLY more questions than answers on the subject.  I get asked at just about every meeting what my interpretation of “cloud” is.  I will normally describe it as an elastic, utility based environment that when properly architected, can grow and shrink as resources are provisioned and de-provisioned.  It’s a move away from “silo based” infrastructure and into a more flexible and scalable, utility based solution.  From a 30,000 foot view, I think that’s probably the best way to describe it.  Then the conversation usually rolls to “so, how do you compare your solution to others” relative to cloud. Here is what I normally talk about.

First and foremost we have sold solutions that are constructed just like everyone else’s.  Our Magnitude 3D 4000 product line is built with pretty much the exact same pieces and parts as does Compellent, NetApp FAS, EMC Clariion and HP EVA etc.  Intel-based controller motherboards, Qlogic HBAs, Xyratex or other SBOD drive bays connected via arbitrated loops.  Like I’ve said in prior posts, just line each of these up, remove the “branding” and you wouldn’t be able to tell the difference.  They all use the same commodity parts.  Why is this important?  Because none of those solutions would work well in a “Cloud” based architecture.  Why?  Because of all the reasons I’ve pointed out in my “Performance Starved Application” post, as well as my “Cost per TB” post.  THEY DON’T SCALE WELL and they have horrible utilization rates.  If you really want to build a storage cloud you have to zero in on what are the most important aspects of it, or what I like to refer to as “The Fundamentals”.

 First you MUST start with a SOLID foundation.  That foundation must not require a lot of “care and feeding” and it must be self healing.   With traditional storage arrays, you could end up with 100, 200 or even 1000 spinning disks.  Do you really want to spend the time (or the HUGE maintenance dollars) swapping out, and dealing with bad disks?  Look don’t get me wrong, I get more than a few eye rolls when I bring this up.  At the end of the day, if you’ve never had to restore data because of a failed drive, or any other issue related to failed disks then this is probably not something high on your list of worries.  For that reason, I’ll simply say why not go with a solution that guarantees that you won’t have to touch the disks for 5 years and backs it up with FREE HARDWARE MAINTENANCE (24/7/365/4hr)!!  Talk about putting your money where your mouth is.  From a financial point of view, who cares if you’ve never had to mess with a failed drive, it’s freaking FREE HARDWARE MAINTENANCE for 5 years!!

Secondly, it MUST have industry leading performance.  Not just “bench-marketing” type performance, I mean real audited, independent, third party, validated performance numbers.  The benchmarks from the Storage Performance Council are a great example of a third party solution.  You can’t just slap SSD into an array and say “I have the fastest thing in the world”. Here is a great example; if you are looking at designing a Virtual Desktop Infrastructure then performance should be at the top of your design criteria (boot storms).  Go check out my blog topic on the subject.  It’s called “VDI and why performance matters”

Finally, you need the glue that holds all of this together from a management and a reporting point of view.  WebServices is that glue. It’s the ubiquitous “open standard” tool on which many, many application solutions have been built on. We are the only company who builds its storage management and reporting on Web Services, and have a complete WSDL to prove it.   No other company epitomizes the value of WebService than Microsoft.  Just go to Google “SANMAN XIOTECH” and you’ll see that the folks out in Redmond have developed their own user interface to our solution (our WSDL) to enable automated storage provisioning.  HOW AWESOME IS THAT!!  Not to mention, WebServices also gives you the ability to do things like develop “chargeback” options which turns the information technology department into a profit center.  We have a GREAT customer reference in Florida that has done this very thing.  They’ve turned their IT department into a profit center and have used those funds to refresh just about everything in their datacenter.

So those are the fundamentals.  In my opinion, those are the top 3 things that you need to address before you move any further into the design phase.  Once your foundation is set, then you can zero in on some of the value added attributes you would like to be able to offer as a service in the cloud. Things like CDP, CAS, De-Duplication, Replication, NAS etc.

@StorageTexan <– Follow Me on Twitter !!!

VMware Virtual Desktop Infrastructure (VDI) and Why Performance matters

Is Storage Performance Predictability when building VMWare Virtual Desktop (VDI) Storage Clouds important?  This can also apply to Citrix and Microsoft Windows Hyper-V Virtual Desktop Systems.

Here is yet another great example of why I just love my job.  Last week  at our Xiotech National Sales Meeting we heard from a net-new educational customer out in the western US.  They recently piloted a VDI project with great success.   One of the biggest hurdles they were running into, and I would bet other storage cloud (or VDI specific) providers are as well, is performance predictability.  This predictability is very important.  Too often we see customer focus on the capacity side of the house and forget that performance can be extremely important (VDI boot storm anyone?).  Rob Peglar wrote a great blog post called “Performance Still Matters” over at the Xiotech.com blog site.  When you are done reading this blog, head over to it and check it out 🙂

So, VDI cloud architects should make sure that the solution they design today will meet the requirements of the project over the next 12 months, 24 months and beyond.  To make matters worse, they need to consider what happens if the cloud is 20% utilized or if/when it becomes wildly successful and utilization is closer to 90% to 95%.  The last thing you want to do is have to add more spindles ($$$) or turn to expensive SSD ($$$$$$$$$) to solve an issue that should have never happened in the first place.

So, let’s assume you already read my riveting, game changing piece on “Performance Starved Applications” (PSA). VDI is ONE OF THOSE PSA’s!!!  Why is this important?  If you are looking at traditional storage (Clariion, EVA, Compellent  Storage Center, Xiotech Mag3D, NetApp FAS) arrays it’s important to know that once you get to about 75% utilization performance drops like my bank account did last week while I was in Vegas.  Like a freaking hammer!!  That’s just HORRIBLE (utilization and my bank account).  Again you might ask why that’s important?   Well I have three kids and a wife, who went back in to college, so funds are not where they should be at…..oh wait (ADD moment) I’m sure you meant horrible about performance dropping and not my bank account.  So, what does performance predictability really mean?  How important would it be to know that every time you added an intelligent storage element (Xiotech Emprise 5000 – 3U) with certain DataPacs you could support 225 to 250 simultaneous VDI instances (just as an example) including boot storms?  This would give you an incredible ability to zero in on the costs associated with the storage part of your VDI deployment.  This is especially true when moving from a pilot program into a full production roll out.  For instance, if you pilot 250 VDI instances, but you know that you will eventually need support for 1000, you can start off with one Emprise 5000 and grow it to a total of four elements.  Down the road, if you grow further than 1000 you fully understand the storage costs associated with that growth, because it is PREDICTABLE.

What could this mean to your environment?  It means if you are looking at traditional arrays, be prepared to pay for capacity that you will probably never use without a severe hit to performance.  What could that mean for the average end user?  That means their desktop boots slowly, their applications slow down and your helpdesk phone rings off the hook!!  So, performance predictability is crucial when designing scalable VDI solutions and when cost management (financial performance predictability) is every bit as critical.

So if you are looking at VDI or even building a VDI Storage Cloud then performance predictability would be a great foundation on which to build those solutions.  The best storage solution to build your application on is the Xiotech Emprise 5000.

Thanks,

@StorageTexan